RXW Leaf Wetness Sensor ### Models: - RXW-LWA-900 (US) - RXW-LWA-868 (Europe) - RXW-LWA-922 (Australia/NZ) ### Included Items: - · Mounting bracket - U-bolt - Tie wraps This sensor measures leaf wetness and is designed to work with the HOBOnet® (HOBO RX) Wireless Sensor Network in which data is transmitted wirelessly from the sensor mote across the network to the station and then uploaded to HOBOlink® web-based software. With HOBOlink, you can monitor sensor readings, view graphs, set up alarms, download data, and # **Specifications** | S | er | าร | 0 | |---|----|----|---| | | | | | | 0 (dry) to 100% (wet) | |--| | | | Capacitive grid | | ±10% | | ±5%; see Note 1 | | 0.59% | | < ±5% per year (in typical growth conditions) | | 3 years in typical growth conditions | | | | -25° to 60°C (-13° to 140°F) with rechargeable batteries -40 to 70°C (-40 to 158°F) with lithium batteries | | 12.6 mW (+11 dBm) non-adjustable | | Reliable connection to 457.2 m (1,500 ft) line of sight at 1.8 m (6 ft) high Reliable connection to 609.6 m (2,000 ft) line of sight at 3 m (10 ft) high | | IEEE 802.15.4 | | RXW-LWA-900: 904–924 MHz
RXW-LWA-868: 866.5 MHz
RXW-LWA-922: 916–924 MHz | | OQPSK (Offset Quadrature Phase Shift Keying) | | Up to 250 kbps, non-adjustable | | <1% | | FO motos nor one DV Wireless Conser Naturals | | 50 motes per one RX Wireless Sensor Network | | Two AA 1.2 V rechargeable NiMH batteries powered by built-in solar panel or two AA 1.5 V lithium batteries for operating conditions of -40 to 70°C (-40 to 158°F) | | Two AA 1.2 V rechargeable NiMH batteries powered by built-in solar panel or two AA 1.5 V lithium batteries for operating conditions of -40 to | | Two AA 1.2 V rechargeable NiMH batteries powered by built-in solar panel or two AA 1.5 V lithium batteries for operating conditions of -40 to 70°C (-40 to 158°F) With NiMH batteries: Typical 3–5 years when operated in the temperature range -20° to 40°C (-4°F to 104°F) and positioned toward the sun (see <i>Deployment and Mounting</i>), operation outside this range will reduce the battery service life | | Two AA 1.2 V rechargeable NiMH batteries powered by built-in solar panel or two AA 1.5 V lithium batteries for operating conditions of -40 to 70°C (-40 to 158°F) With NiMH batteries: Typical 3–5 years when operated in the temperature range -20° to 40°C (-4°F to 104°F) and positioned toward the sun (see <i>Deployment and Mounting</i>), operation outside this range will reduce the battery service life With lithium batteries: 1 year, typical use | | Two AA 1.2 V rechargeable NiMH batteries powered by built-in solar panel or two AA 1.5 V lithium batteries for operating conditions of -40 to 70°C (-40 to 158°F) With NiMH batteries: Typical 3–5 years when operated in the temperature range -20° to 40°C (-4°F to 104°F) and positioned toward the sun (see <i>Deployment and Mounting</i>), operation outside this range will reduce the battery service life With lithium batteries: 1 year, typical use 16 MB Sensor grid: 4.7 x 5.1 cm (1.8 in x 2.0 inches) Sensor housing: 12.2 x 1.8 cm (4.8 in x 0.7 inches) Mounting bracket: 20 x 3 x 0.5 cm (8 x 1.3 x 0.2 inches) Cable length: 2 m (6.56 ft) | | | # Specifications (continued) Sensor and cable: Weatherproof **Environmental Rating** Mote: IP67, NEMA 6 **Compliance Marks** RXW-LWA-900: See last page RXW-LWA-868: The CE Marking identifies this product as complying with all relevant directives in the European Union RXW-LWA-922: See last page Note 1 Given the nature of the sensor design and sensor operating frequency, the system has inherent susceptibilities to Radio Frequency signals. The repeatability specification when subjected to certain RFI environments, such as those outlined in IEC 61000-4-3 and IEC 61000-4-6, may be significantly reduced The system level repeatability will be particularly affected when placed in an electric field of 3 V/m or greater in the 150 KHz to 1000 MHz range. RFI mitigation practices and physical deployment changes may reduce the system susceptibility. If deployments are planned in high RFI energy environments, Onset recommends on-site testing to determine system level repeatability. # **Mote Components and Operation** LEDs Solar Panel Cable Antenna CD Screen USB Port Battery Holder **Sensor Mote Opened** Mounting Tab: Use the tabs at the top and bottom of the mote to mount it (see Deploying and Mounting). **Solar Panel:** Position the solar panel towards the sun to charge the mote batteries (see Deploying and Mounting). Sensor Cable: This is the cable that connects the mote to the sensor Eyelet: Use this eyelet to attach a 3/16 inch padlock to the mote for security. Latch: Use the two latches to open and close the mote door. Ground Wire Port: Use this port to connect a ground wire (see Deploying and Mounting). Antenna: This is the built-in antenna for the radio communications across the HOBOnet Wireless Sensor Network. LEDs: There are two LEDs to the left of the LCD screen. The green LED blinks during the process of joining a network, blinking quickly while the mote searches for a network and then slowly as the mote registers with the network. Once the network registration process is complete, the blue LED blinks at 4 seconds to indicate normal operation. If the mote is not currently part of a network, the blue LED will be off. If the blue LED is on and not blinking, there is a problem with the mote. Contact Onset Technical Support. **Solar Panel Cable:** This cable connects the built-in solar panel to the mote circuitry. Battery Holder: The location where the batteries are installed as shown (see Battery Information). **USB Port:** Use this port to connect to the mote to a computer via USB cable if you need to update the firmware (see Updating Mote Firmware). Button: Push this button for 1 second to illuminate the LCD or 3 seconds for the mote to search for a HOBOnet Wireless Sensor Network to join (see Adding the Mote to the HOBOnet Wireless Sensor Network). LCD Screen: The mote is equipped with an LCD screen that displays details about the current status. This example shows all symbols illuminated on the LCD screen followed by definitions of each symbol in the table. #### **LCD Symbol** The battery indicator shows the approximate battery charge remaining. This is a signal strength indicator. The more bars, the stronger the signal between motes. If there is no x icon next to the signal strength indicator, then the mote is part of a HOBOnet Wireless Sensor Network. #### **LCD Symbol** #### Description An empty signal strength icon plus the x icon indicates that the mote is not currently part of a network. See Adding the Mote to the HOBOnet Wireless Sensor Network for details on how to add a mote to the network. When the mote is in the process of joining a network, the signal strength icon will blink and then the bars in the icon will cycle from left to right. The x icon will blink during the last step in the network registration process (see Adding the Mote to the HOBOnet Wireless Sensor Network for details). This indicates a problem with the sensor itself (the mote is operational). Check the sensor and make any adjustments to it as needed. Contact Onset Technical Support if the problem persists. # Adding the Mote to the HOBOnet Wireless **Sensor Network** The mote must join a HOBOnet Wireless Sensor Network before it can begin measuring temperature and transmitting data. This requires accessing the station and the mote at the same time so it is recommended that you complete these steps before deploying the mote. Important: If you are setting up a new station, follow the instructions in the station quick start before setting up this mote (go to or for RX3000 stations). To add a mote to the network: - 1. If the LCD is blank on the station, press any button to wake - 2. Press the Select button once (which shows the number of smart sensors installed) and then press it again to switch to the module with the manager (module 2 on RX2105 or RX2106 stations). Press this button to view the module 3. Press the Search button (the magnifying glass). The magnifying glass icon will blink while the station is in search mode. Press this button so the station is ready to have motes join the network - 4. Open the mote door and install the batteries if you have not already done so. - 5. Press the button on the mote for 3 seconds. The signal strength icon will flash and then cycle. 6. Watch the LCD on the mote. This signal strength icon blinks while searching for a network. Once a network is found, the icon will stop flashing and the bars will cycle from left to right. This network connection "x" icon blinks while the mote completes the registration process. which may take up to five minutes. Once the mote has finished joining the network, the "x" icon is removed and the channel count on the station LCD increases by two (one for leaf wetness and one for the mote battery). This process may take up to five minutes. The green LED blinks quickly while the mote searches for a network to join and then blinks slowly while it completes the network registration. Once the mote has finished joining the network, the green LED turns off and the blue LED then blinks indefinitely while the mote is part of the network. Note: If the mote cannot find the network or has trouble remaining connected during this process, make sure the mote is in a vertical, upright position and within range of the station. 7. Press the Search button (the magnifying glass) on the station to stop searching for motes. Press this button again to stop searching for motes If you added more than one more mote to the network, then the total channel count on the station LCD for the manager module will represent all measurement channels plus a battery channel for each mote in the network. Sensor measurements will be recorded at the logging interval specified in HOBOlink, transmitted to the station, and uploaded to HOBOlink at the next connection interval (readout). Use HOBOlink to monitor mote status and health. If a mote is temporarily offline, any logged data is saved until it is back online. In addition, if a mote is offline for 30 minutes, the station will automatically connect to HOBOlink and report the mote as missing. Once the mote is back online, any logged data will be uploaded the next time the station connects to HOBOlink. See the HOBOlink Help for details on how to change the logging and connection intervals, view data, check mote status, add the mote to a map, and more. ## Deployment and Mounting #### Mounting and Positioning the Mote - Mount the mote to a mast or pipe using cable ties or affix the mote to a wooden post or flat surface with screws. Insert the cable ties or screws through the holes on the mounting tabs. - Consider using plastic poles such as PVC to mount the mote as certain types of metal could decrease signal strength. - Make sure the mote remains in a vertical position once it is placed in its deployment location for optimal network communications. - Make sure the mote door is closed, with both latches fully locked to ensure a watertight seal. - Consider using a 3/16 inch padlock to restrict access to the mote. With the mote door closed, hook a padlock through the eyelet on the right side of the door and lock it. - Position the mote towards the sun, making sure the solar panel is oriented so that it receives optimal sunlight throughout each season. It may be necessary to periodically adjust the mote position as the path of the sunlight changes throughout the year or if tree and leaf growth alters the amount of sunlight reaching the solar - Make sure the mote is mounted a minimum of 1.8 m (6 ft) from the ground or vegetation to help maximize distance and signal strength. - Place the mote so there is full line of sight with the next mote. If there is an obstruction between two sensor motes or between the sensor mote and the manager, then use a repeater mounted on the obstruction. For example, if there is a hill between the sensor mote and the manager, place a repeater at the top of the hill between the sensor mote and the manager. - There should not be more than five motes in any direction at their maximum transmission range from the manager. Data logged by a wireless sensor must travel or "hop" across the wireless network from one mote to the next until it ultimately reaches the manager connected to the station. To make sure the data can successfully travel - across the network, the mote should not be more than five hops away from the manager. - The HOBOnet Wireless Sensor Network can support a maximum of 50 motes. - Use a #4-40 screw to attach a ground wire to the port on the back of the mote if you are deploying the mote in a location where lightning is a concern. ### Sensor Mounting Guidelines Important: DO NOT PAINT OR COAT THE SENSOR. It is ready to use and should not be coated. See Sensor Operation for more details. - In most applications, the sensor should be mounted in whichever direction will prolong wetness the longest. For example, in the Northern hemisphere, orienting the sensor to face northwest will minimize exposure to solar radiation in the morning and maximize morning dew exposure. - The leaf wetness sensor can be tilted to any angle. As the angle becomes steeper, water will run off the sensor more easily, reducing the amount of time the sensor stays wet. The exact angle used is a function of the type of vegetation of interest. Use an angle of more than 15 degrees from horizontal to prevent puddles from forming on the sensor. - The leaf wetness bracket can also be mounted to the cross arm (M-CAA or M-CAB). - Be sure to secure the sensor cable with cable ties to protect the cable from damage. Wires should be bound tightly to the mast to help protect them from getting damaged in severe weather. - Do not mount the sensor within two feet of the station case. - Refer to the station manual and Tripod Setup Guide at www.onsetcomp.com/support/manuals for more information regarding setting up stations. ## **Bracket Mounting** To mount the sensor using the included bracket: - 1. Use the U-bolt to secure the bracket to any 2.5 to 4 cm (1 to 1.6 inch) diameter mast. - 2. Use two cable ties to secure the sensor to the bracket. Do not fully tighten the cable ties. - 3. Note that one side of the sensor surface has a visible grid. The grid side should be facing upwards. Typically the sensor is mounted at an angle of 15 to 45 degrees from horizontal. - 4. Once the desired angle has been set, pull the cable ties tight and cut off the tag ends. - 5. Secure the sensor cable with cable ties. ## **Sensor Operation** The leaf wetness sensor measures the percentage of the sensor grid that is wet. A completely dry sensor will record 0% wetness, while a measurement of 100% wetness corresponds to the sensor being completely covered with a thin layer of water. After prolonged exposure to very hot and wet environments, the sensor may return to only 1 to 3% wet when dried out, but given a day or two in a warm, dry environment, the sensor will recover and return to zero when dry. #### IMPORTANT: Do Not Paint the Sensor. Unlike most other leaf wetness sensors, the leaf wetness sensor is ready to use and should not be coated. Some manufacturers of leaf wetness sensors recommend painting their sensors with a flat latex paint to improve the sensor's characteristics. These manufacturers supply their sensors uncoated and require the user to paint it. Do not coat the HOBO leaf wetness smart sensor. Onset's sensor is preconditioned and factory calibrated. Although it is certainly possible to alter the response of the sensor by painting it, applying any sort of coating will only reduce its sensitivity. ### Calibration The leaf wetness sensor should be field calibrated to determine the wet/dry transition point. Various types of vegetation will have varying transition points. The best practice is to install a station and the leaf wetness sensor in the study area and, while logging data, directly observe the plants to record the time of day that the vegetation makes the transition from wet to dry. Export the logged station data to determine the percent wetness when the wet/dry transition was observed. In most cases, this is the value that will best represent the wet/dry transition point for your study. You will need to retain this value for use with any third-party software. ## Maintenance The sensor is a capacitive sensor and is less sensitive to contamination than resistive sensors. However, dust, dirt or other contaminants on the sensor will retain moisture and that will ultimately affect the sensor's performance. You should periodically inspect the sensor and gently clean the sensor grid once per year with a non-abrasive rag, mild soap, and fresh water. The mote is designed for outdoor use, but should be inspected periodically. When inspecting the mote, do the following: - Verify the mote is free of visible damage or cracks. - Make sure the mote is clean. Wipe off any dust or grime with a damp cloth. - Wipe off any water before opening the mote. - Make sure the interior seal is intact and the latches are fully locked when the mote door is closed. ## **Verifying Sensor Accuracy** It is recommended that you check the accuracy of the leaf wetness sensor annually. If the sensor is not providing accurate data, it may be damaged or broken. ## **Updating Mote Firmware** If a new firmware version is available for the mote, use HOBOlink to download the file to your computer. - 1. In HOBOlink, go to Devices, RX Devices, and click your station name. - 2. On the station page, click Overview and scroll down to Device Information. - 3. Click the Wireless tab. This icon appears next to the mote if there is a new version of firmware available. - 4. Click the firmware upgrade link. Click Download and save the firmware .bin file to your computer. - 5. Connect the mote to the computer with a USB cable (open the mote door and use the USB port to the right of the LCD). The blue LED is illuminated while connected. - 6. The mote appears as a new storage device in the computer's file storage manager. Copy the downloaded firmware file to the new storage device (the mote). The blue LED will blink slowly while the file is copying. - 7. After the file is copied to the mote, the LED will stop blinking and remain a steady blue. Eject the storage device from the computer and disconnect the cable from the mote. The firmware installation process will begin automatically on the mote. The blue LED will blink rapidly while the firmware is installed. Once the firmware installation is complete, the LCD symbols return and the mote will automatically rejoin the network. #### Notes: - Mac® users: A message may appear indicating the disk has not ejected properly when disconnecting the mote from the computer. The mote is operational and you can ignore the message. - If the blue LED turns off abruptly while copying the file or installing the firmware, a problem has occurred. Contact Onset Technical Support for help. ### **Battery Information** The mote uses two 1.2 V rechargeable NiMH batteries, charged by the built-in solar panel. The quality and quantity of solar light can affect whether the battery is sufficiently charged to last through the night and cloudy periods. Make sure the mote is placed in a location that will receive several hours of sunlight each day. If the mote does not receive enough sunlight to recharge the batteries, the battery life is estimated at 3-4 months. When batteries are regularly recharged, expected battery life is estimated at 3–5 years. Battery life varies based on the ambient temperature where the mote is deployed, the logging interval, the number of tripped alarms, and other factors. Deployments in extremely cold or hot temperatures can impact battery life. Estimates are not guaranteed due to uncertainties in initial battery conditions and operating environment. Mote operation will stop when battery voltage drops to 1.8 V. Mote operation will return if the battery recharges to 2.3 V. If the batteries are unable to be recharged, replace them with fresh rechargeable batteries. Note: if you install used rechargeable batteries that together are less than 2.3 V, the mote will not resume operation. To replace rechargeable batteries: - 1. Open the mote door. - 2. Remove the old batteries and install fresh ones observing polarity. - 3. Make sure the solar panel cable is plugged in. The mote contacts the network once the new batteries are installed. The green LED blinks during this process while the bars in the signal strength indicator on the LCD cycle from left to right and then the x icon blinks. Once this process is complete, the x icon is removed, the green LED stops blinking, and the blue LED begins blinking instead. #### **Lithium Batteries** You can use two 1.5 V lithium batteries (HWSB-LI) for operation at the extreme ends of the mote operating range. Lithium battery life is an estimated at 1 year, but varies based on the ambient temperature where the mote is deployed, the logging interval, the number of tripped alarms, and other factors. Estimates are not guaranteed due to uncertainties in initial battery conditions and operating environment. When using lithium batteries, you must disconnect the solar panel cable because the batteries will not be recharged. To install lithium batteries: - 1. Open the mote door. - 2. Remove any old batteries and install the new ones observing polarity. - 3. Push in the side tab of the solar panel cable connector and pull the connector out of the cable port. - 4. Place the connector in the slot on the inside of the mote door. Make sure the solar panel cables are tucked inside the door so that they do not interfere with the interior seal when the mote is closed. The mote contacts the network once the new batteries are installed. The green LED blinks quickly while the mote searches for a network to join and then blinks slowly while it completes the network registration. Once the mote has finished joining the network, the green LED turns off and the blue LED then blinks indefinitely while the mote is part of the network. **MARNING:** Do not cut open, incinerate, heat above 85°C (185°F), or recharge the lithium batteries. The batteries may explode if the mote is exposed to extreme heat or conditions that could damage or destroy the battery cases. Do not mix battery types, either by chemistry or age; batteries may rupture or explode. Do not dispose of the logger or batteries in fire. Do not expose the contents of the batteries to water. Dispose of the batteries according to local regulations for lithium batteries.