

Operator's Manual

CP030/CP030A CP031/CP031A Current Probes

CP03x/CP03xA Current Probes Operator's Manual April 2015

CP030/CP030A and CP031/CP031A Current Probes Operator's Manual

© 2015 Teledyne LeCroy, Inc. All rights reserved.

Unauthorized duplication of Teledyne LeCroy documentation materials other than for internal sales and distribution purposes is strictly prohibited. However, clients are encouraged to duplicate and distribute Teledyne LeCroy documentation for internal educational purposes.

Teledyne LeCroy is a registered trademark of Teledyne LeCroy, Inc. Windows is a registered trademark of Microsoft Corporation. Other product or brand names are trademarks or requested trademarks of their respective holders. Information in this publication supersedes all earlier versions. Specifications are subject to change without notice.

925589-00 April 2015

Contents

Safety Instructions	1
Symbols	1
Precautions	1
Introduction	3
Specifications	3
Warranted Characteristics	3
Nominal Characteristics	4
Typical Characteristics	4
Environmental Characteristics	5
Physical Characteristics	5
Safety Ratings	5
CP030/CP030A Maximum Input Current vs. Frequency	6
CP030/CP030A Insertion Impedance vs. Frequency	6
CP031/CP031A Maximum Input Current vs. Frequency	7
CP031/CP031A Insertion Impedance vs. Frequency	7
Operation	8
Precautions	8
Connecting to the Test Instrument	8
Connecting to the Test Circuit	8
Operating with an Oscilloscope	9
Performance Verification	11
Test Equipment Required	11
Preliminary Procedure	12
Functional Check	13
Check LF Accuracy	13

CP03x/CP03xA Current Probes

Performance Verification Test Record	
CP03x Test Record	15
Care and Maintenance	16
Cleaning	16
Calibration Interval	16
Service Strategy	16
Troubleshooting	16
Returning a Product for Service	17
Contact Teledyne LeCroy	18
Warranty	18
Certifications	19
Declaration of Conformity — EMC	19
Declaration of Conformity – Low Voltage Directive	20
Environmental Compliance	20

Safety Instructions

Follow these instructions to keep this oscilloscope accessory operating in a correct and safe condition. Observe generally accepted safety procedures in addition to the precautions specified in this section. The overall safety of any system incorporating this accessory is the responsibility of the assembler of the system.

Symbols

These symbols appear on the probe body or in documentation to alert you to important safety considerations.

Precautions

Avoid personal injury or damage to your equipment by complying with the following safety precautions:

Use only as specified. The probe is intended to be used only with compatible Teledyne LeCroy instruments. Use of the probe and/or the equipment it is connected to in a manner other than specified may impair the protection mechanisms.

Do not overload; observe all ratings. To avoid electric shock or fire, do not connect the current probe to any wire that carries voltages or currents that exceed the ratings of the probe. Observe all terminal ratings.

Connect and disconnect properly. Connect the probe to the measurement instrument before connecting it to the circuit/signal being tested. De-energize the circuit under

CP03x/CP03xA Current Probes

test before connecting or disconnecting the probe. Avoid damaging cables through excessive bending.

Never install or remove the probe on bare conductors which are energized. The transformer core and shield are grounded but not insulated and may contact the conductor when the locking lever is open.

Use the probe only with conductors carrying 300 V or less to avoid short circuits and accidents that could result in injury or death.

Be sure the conductors measured are insulated with material conforming to Overvoltage Category I (basic insulation requirement for working voltage of 300 V), Pollution Degree 2 to prevent short circuits and electric shock when conductors carry less than 300 V but more than the safe voltage level (SELV limit).

Be careful not to damage the insulation surface when making measurements.

Use only within the operational environment listed. Do not use in wet or explosive atmospheres.

Do not remove the probe's casing. Touching exposed connections may result in electric shock.

Keep product surfaces clean and dry.

Do not operate with suspected failures. Before each use, inspect the probe and accessories for any damage such as tears or other defects in the probe body, cable jacket, accessories, etc. If any part is damaged, cease operation immediately and sequester the probe from inadvertent use.

Introduction

The CP030, CP030A, CP031, and CP031A current probes are designed for easy, highly accurate current measurements. The compact probes offer wide bandwidth with over-current protection.

The probes utilize a combination of Hall-effect and transformer technology which enables measurements to be made on DC, AC and impulse currents.

The CP030 and CP030A have a 50 MHz bandwidth and are designed to measure continuous currents up to 30 Amp.

The CP031 and CP031A have a 100 MHz bandwidth and are designed to measure continuous currents up to 30 Amp.

The probes can be used with any Teledyne LeCroy instrument with a ProBus interface, or by using a ProBus interface adapter. With the ProBus interface, the probe becomes an integral part of the measuring instrument. The bandwidth limit, Auto Zero and Degauss functions are all controlled from the instrument's touch screen user interface. The interface provides power to the probe, so no external power supply is needed.

Specifications

For the most current specifications, see the probe product pages at teledynelecroy.com. Specifications are subject to change without notice.

Warranted Characteristics

	CP030	CP030A	CP031	CP031A
Max Continuous Input Current at 0.1 V/A	30 Arms		30 Arms	
Max Peak Current	50 Apeak non-continuous		50 Apeak non-continuous	
Amplitude Accuracy	±1.0 % of reading ±10 mA; to 30 Arms (DC, 45 to 65 Hz) ±2.0% of reading; to 50 Apeak		0 Arms ±1.0 % of reading ±10 mA; to 30 (DC, 45 to 65 Hz) ±2.0% of reading; to 50 Apeak	
Bandwidth (probe only)	DC to 50 MHz		DC to 100 MH	z

Nominal Characteristics

	CP030	CP030A	CP031	CP031A
Intended Output Load	1 ΜΩ	·	1 ΜΩ	·
Maximum Permitted Circuit Voltage	300 V CAT I (insu	ılated conductor)	300 V CAT I (insu	ulated conductor)
Sensitivity *	10 mA/div to 15 A/div	1 mA/div to 15 A/div	10 mA/div to 15 A/div	1 mA/div to 15 A/div
Offset Range (1x Attenuation)	N/A	±5 A	N/A	±5 A
Max Continuous Input Current at 1 V/A (100mA/div or less)	N/A	5 A	N/A	5 A

^{*} Values are based on oscilloscopes with 1 mV/div sensitivity. Numbers will be higher on instruments with lower sensitivity.

Typical Characteristics

	CP030	CP030A	CP031	CP031A
Output voltage	0.1 V/A	0.1 V/A & 1 V/A	0.1 V/A	0.1 V/A & 1 V/A
Sensitivity Temperature Coefficient	±2% or less (0°C to +40°C)		±2% or less (0°C to +40°C)	
Noise	2.5 mArms or less	320 µArms at Full BW 150 µArms at 20 MHz BWL	2.5 mArms or less	320 µArms at Full BW 150 µArms at 20 MHz BWL
Rise Time	≤ 7 ns		≤ 3.5 ns	1

Environmental Characteristics

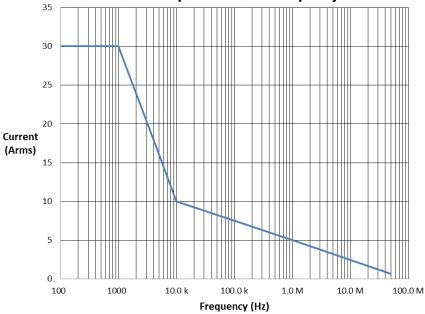
	CP030	CP030A	CP031	CP031A
Operating Temperature	0 °C to 40 °C	0 °C to 40 °C		
Operating RH	≤ 80% (non-condensing)		≤ 80% (non-co	ondensing)
Storage Temperature	-10 °C to 50 °C		-10 °C to 50 °C	
Storage RH	≤ 80% (non-condensing)		≤ 80% (non-co	ondensing)
Maximum Altitude	2000 m		2000 m	
Effect of External Magnetic Field	Equivalent to a maximum of 20 mA in a DC/60 Hz, 400 A/m magnetic field			a maximum of 5 mA , 400 A/m magnetic field

Physical Characteristics

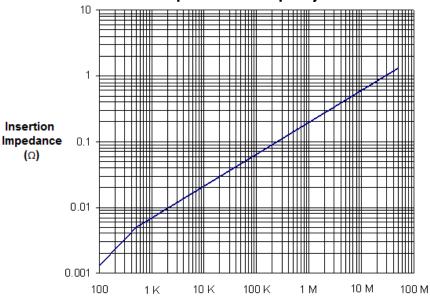
	CP030	CP030A	CP031	CP031A	
Probe Head Length	175 mm (6.9 inch)		175 mm (6.9 inch)		
Probe Head Width	18 mm (0.7 inch)		18 mm (0.7 inch)		
Probe Head Height	40 mm (1.57 inch)		e Head Height 40 mm (1.57 inch) 40 mm (1.57 inch)		
Maximum diameter of conductors measured	5 mm (0.2 inch)				

Safety Ratings

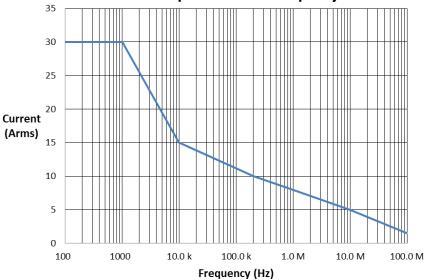
Measurement Category I: 300 V max. permitted circuit voltage, insulated conductor required

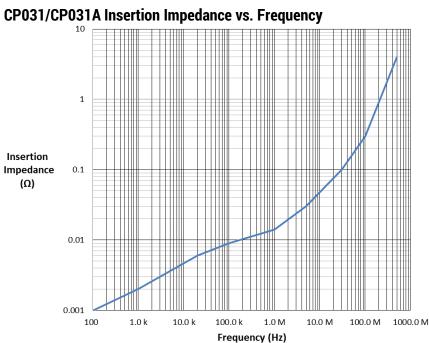

1500 V anticipated transient overvoltage

Pollution Degree 2


Definitions (per IEC/EN 61010-1)

- 1. Measurement Category I (CAT I) refers to measurements performed on circuits not directly connected to mains.
- 2. Pollution Degree 2 refers to operating environment where normally only dry, non-conductive pollution occurs. Temporary conductivity caused by condensation must be expected.


CP030/CP030A Maximum Input Current vs. Frequency



CP030/CP030A Insertion Impedance vs. Frequency

CP031/CP031A Maximum Input Current vs. Frequency

Operation

Precautions

The sensor head is a precision assembly consisting of a molded component with a ferrite core and a Hall effect element. It may be damaged if subjected to sudden changes in temperature, mechanical strain or shock.

The mating surfaces of the sensor are precision ground and should be treated with care. If there is any type of dust or dirt on the mating surfaces of the sensor head, measurements may be impaired.

Accurate measurements may not be possible in locations subject to strong magnetic fields such as transformers and high-current conductors, or in locations subject to strong external electric fields.

Connecting to the Test Instrument

The probe has been designed for use with the Teledyne LeCroy instruments equipped with the ProBus interface. When you attach the probe output connector to the instrument's input connector, the instrument will:

- Recognize the probe model
- Set the input termination to 1 $M\Omega$
- Activate the probe control functions in the touch screen user interface.

Connecting to the Test Circuit

The probe has been designed with a movable split core, eliminating the need to break the conductor for the core to slip around the conductor.

To connect:

- 1. Pull back the slider so that the clamp opens.
- 2. Align the sensor so that the current direction indicator corresponds to the direction of current flow in the conductor.

- 3. Close the slider on the sensor head until the "UNLOCK' indication disappears and the "LOCK" indication appears.
- 4. Verify that the opening lever is firmly locked and the clamp is securely closed.

CAUTION: Never use this probe on bare conductors. The core and shield are grounded and any voltage applied to the conductor may cause damage the probe or the circuit under test.

Operating with an Oscilloscope

When the probe is connected to a Teledyne LeCroy oscilloscope, the displayed scale factor and measurement values will be adjusted to account for the effective gain of the probe.

A/div, Offset, and Coupling, and Bandwidth (BWL) are controlled from the Channel setup (Cx) dialog.

Channel setup dialog with Probe dialog behind it.

The probe's attributes are shown on the Probe dialog, which appears behind the Channel dialog when a probe is detected. The Probe dialog also contains controls for Auto Zero and Degauss.

Probe dialog.

Probe A/div and Attenuation

The front panel Volts/div knob controls the oscilloscope's scale factor and the probe's internal attenuation to give full available dynamic range from 10mA/div to 15 A/div for CP030 and CP031, or 1 mA/div to 15 A/div for CP030A and CP031A. CP031A and CP031A will automatically adjust attenuation based on the A/div setting.

Alternatively, A/div may be controlled from the channel setup dialog (Cx).

Bandwidth Limit

The probe is capable of switching from Full (maximum bandwidth) to 20 MHz bandwidth by changing the Bandwidth setting on the Cx dialog.

AC Coupling

In general, using offset to adjust a DC current on the screen is the preferred method to measure transient signals in the presence of a larger DC currents. The offset has limits that will cause a signal that is beyond the linear operating range of the probe to go off the screen, preventing measurement errors.

There are times, however, when it is convenient to use AC coupling to remove the DC component of the measured signal from the measurement. Selecting AC uses the scope AC coupling at the probe output to remove any steady state value from the displayed voltage.

NOTE: Since this AC coupling is on the probe output, DC current beyond the linear range of the probe will cause the probe to saturate and make the displayed waveform inaccurate. It is important not to exceed the maximum linear input values when using AC coupling. The maximum DC input current is 30A when the probe is in 0.1 V/A sensitivity (>100mA/div), and 5A when the probe is in 1 V/A (≤100mA/div).

Auto Zero

The Probe dialog incorporates an Auto Zero function to remove the DC offset from the current probe. Auto Zero must be invoked by the user. After several minutes of warm-up, or when the probe is exposed to a large shift in ambient temperature, some DC offset drift may occur. Open the Probe dialog and touch **AUTO ZERO**.

Degauss

If the probe has been magnetized by external magnetic field or by excessive input, the core can be demagnetized by degaussing. The demagnetizing process takes about 5 seconds and should always be performed before taking a measurement.

Without clamping the probe around a conductor, slide the opening lever to close and lock the probe. Open the Probe dialog and touch **DEGAUSS**.

An Auto Zero is automatically performed as part of the degauss cycle.

Performance Verification

This procedure can be used to verify the warranted characteristics of the probe. The recommended calibration interval for the models CP030, CP030A, CP031, and CP031A Current Probes is one year. The complete performance verification procedure should be performed as the first step of annual calibration. Performance verification can be completed without removing the probe covers or exposing the user to hazardous voltages. Test results can be recorded on a photocopy of the Test Record provided at the end of the manual.

The warranted characteristics of the probe are valid at any temperature within the Environmental Characteristics listed in the Specifications. However, some of the other test equipment used to verify the performance may have environmental limitations required to meet the accuracy needed for the procedure. Make sure that the ambient conditions meet the requirements of all the test instruments used in his procedure.

NOTE: Operation of the probe as described requires software version 4.3.0.0 or higher for CP03x and 7.7.1.Xa or higher for CP03xA. To confirm the version installed on the instrument, choose Utilities > Utilities Setup from the menu bar, then open the Status tab. CP03xA probes are not compatible with WaveSurfer 3000 oscilloscopes.

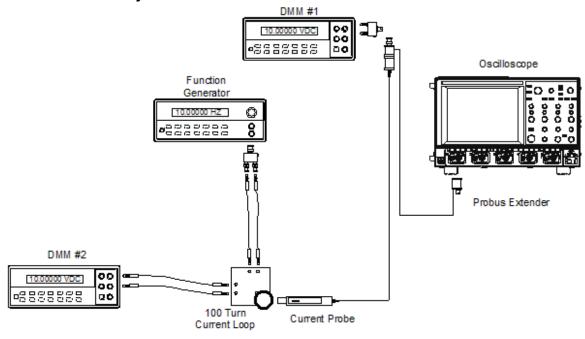
Test Equipment Required

The following table lists the test equipment and accessories (or their equivalents) which are required for performance verification of the CP03x/CP03xA Current Probes. Because the input and output connector types may vary on different brands and models of test instruments, additional adapters or cables may be required.

CP03x/CP03xA Current Probes

Description	Minimum Requirements	Example Equipment
Wide Band Oscilloscope	200 MHz bandwidth ProBus interface equipped	Teledyne LeCroy WaveRunner 6 Zi
Digital Multimeter (2)	DC: 0.1% Accuracy 5½ digit resolution	Agilent Technologies 34401A Fluke 8842A-09
Function Generator	50 Hz sine wave output 3 Vrms into 50Ω	Teledyne LeCroy WaveStation 3082 Stanford Research Model DS340
Calibration Fixture	100 turn loop in series with 0.5Ω ±0.1% resistor with sense terminals	Teledyne LeCroy CP031-CF02
Calibration Fixture	ProBus Extension Cable	Teledyne LeCroy PROBUS-CF01
Banana Plug Adapter	Female BNC to Dual Banana Plug	Pomona 1269
Patch Cables (4)	Male Banana to Male Banana, 12"	Pomona B-12-0 (black) Pomona B-12-2 (red)
BNC Adapter	BNC Male to Dual Banana Jack	Pomona 1296

Preliminary Procedure


- 1. Connect the probe to the C1 input of the instrument and completely close the probe slider.
- 2. Turn on the instrument and allow at least 30 minutes warmup time for the probe before performing the verification procedure.
- 3. Turn on the other test equipment and allow these to warm up for the time recommended by the manufacturer.
- 4. While the instruments are reaching operating temperature, make a photocopy of the Performance Verification Test Record and fill in the necessary data.

Functional Check

The functional check will verify the basic operation of the probe functions. It is recommended to perform the functional check prior to the performance verification procedure.

- Open the C1 setup dialog and confirm that the bandwidth is set to Full (BWL OFF).
- 2. Verify that the probe is sensed and the probe dialog (CP03x or CP03xA tab) appears behind the C1 setup dialog.
- 3. Open the probe dialog and degauss the probe by touching **DEGAUSS**, then **OK**.
- 4. Confirm that the message "Performing Degauss on CP03x...." is displayed in the message bar and that no error messages are displayed.

Check LF Accuracy

LF Accuracy Test set up.

- 1. Set the Function generator to 50 Hz sine wave, output voltage at 3 Vrms with 50Ω output.
- 2. Remove the probe from the instrument and reconnect using the ProBus extension cable. Connect the BNC male connector of the ProBus extension to DMM #1 using a BNC Female to Dual Banana adapter.
- 3. Using Banana Patch cords and the BNC to Dual Banana Plug adapter, connect the 'V Source' and 'V Return' terminals of the 100 Turn Calibration Loop to the output of the Function Generator.
- 4. Connect the Current Sense terminals of the 100 Turn Calibration Loop to the voltage inputs of DMM #2.
- 5. Set both DMMs to measure AC Volt.
- 6. With the probe removed from any signal and the slider returned to the LOCKED position, degauss the probe by pressing the **DEGAUSS** button.
- 7. Set the current probe channel sensitivity to 1 A/div.
- 8. Open the probe slider and position the probe input around the 100 Turn loop. Close and LOCK the slider.
- Adjust the Function generator voltage until the voltage measured at the 'Current Sense' terminals (DMM #2) reads 50 mV ±0.05 mV. (This corresponds to 10 A at the probe head).
- 10. Record the voltage measured by DMM #1 on the Test Record.
- 11. Verify that the measured voltage is between 0.989 volt and 1.011 volt.

Performance Verification Test Record

Permission is granted to photocopy the following page and record the results of the performance verification procedure on the copy. File the completed record as required by applicable internal quality procedures.

Results recorded under "Test Result" are the actual specification limit check. The test limits are included in all of these steps. Record other measurements and intermediate calculations that support the limit check under "Intermediate Data".

CP03x Test Record

Model:	
Serial Number:	
Asset/Tracking Number:	
Date:	
Technician:	

Equipment	Model	Serial Number	Calibration Due Date
Digital Multimeter #1			
Digital Multimeter #2			
Function Generator*			N/A

^{*} The function generator used in this performance verification procedure is used for making relative measurements. The output of the generator is measured with a DMM or oscilloscope. Thus, the generator is not required to be calibrated.

Step	Description	Intermediate Data	Test Result
10	Probe Output (limit: 0.495 - 0.505 V)		V

Care and Maintenance

Cleaning

The exterior of the probe and cable should be cleaned only using a soft cloth moistened with water or isopropyl alcohol. The use of abrasive agent, strong detergents or other solvents may damage the probe.

CAUTION: The probe case is not sealed and should never be immersed in any fluid.

Calibration Interval

The recommended calibration interval is one year. Adjustment should only be performed by qualified personnel. (A performance verification procedure is included in this manual.)

Service Strategy

Defective probes must be returned to a Teledyne LeCroy service facility for diagnosis and exchange. A defective probe under warranty will be replaced with a factory refurbished probe. A probe that is not under warranty can be exchanged for a factory refurbished probe. A modest fee is charged for this service. A defective probe must be returned in order to receive credit for the probe core.

Troubleshooting

If the probe is not operating properly the problem may be the way in which it is used. Before assuming the probe is defective, perform the following troubleshooting procedures:

- 1. Verify the test instrument is running the required firmware (4.3.0.0 or higher for CP030/CP031 and 7.7.1.Xa or higher for CP030A/CP031A).
- 2. If the waveform is inverted, check that the arrow on the slider is in the direction of the current flow.
- 3. If there is no signal, check that the slider is closed and locked.

Returning a Product for Service

Contact your local Teledyne LeCroy service center for calibration or other service. If the product cannot be serviced on location, the service center will give you a Return Material Authorization (RMA) code and instruct you where to ship the product. All products returned to the factory must have an RMA. Return shipments must be prepaid.

Teledyne LeCroy cannot accept COD or Collect shipments. We recommend air-freighting. Insure the item you're returning for at least the replacement cost.

- 1. Remove all accessories from the probe. Do not include the manual.
- 2. Pack the probe in its case, surrounded by the original packing material (or equivalent).
- 3. Label the case with a tag containing:
 - The RMA
 - Name and address of the owner.
 - Probe model and serial number
 - Description of failure or requisite service
- 4. Package the probe case in a cardboard shipping box with adequate padding to avoid damage in transit.
- 5. Mark the outside of the box with the shipping address given to you by Teledyne LeCroy; be sure to add the following:
 - ATTN: <RMA code assigned by the Teledyne LeCroy>
 - FRAGILE
- 6. Insure the item for the replacement cost of the probe.
- 7. If returning a probe to a different country:
 - Mark the shipment as a "Return of US manufactured goods for warranty repair/recalibration."
 - If there is a cost for the service, list the cost in the value column and the original purchase price "For insurance purposes only."
 - Be very specific as to the reason for shipment. Duties may have to be paid on the value of the service.

Contact Teledyne LeCroy

For the most complete and up-to-date list of sales and service centers by country, visit teledynelecroy.com/support/contact.

Warranty

Teledyne LeCroy warrants this oscilloscope accessory for normal use and operation within specification for a period of one year from the date of shipment. Spare parts, replacement parts and repairs are warranted for 90 days.

In exercising its warranty, Teledyne LeCroy, at its option, will either repair or replace any assembly returned within its warranty period to the Customer Service Department or an authorized service center. However, this will be done only if the product is determined by Teledyne LeCroy's examination to be defective due to workmanship or materials, and the defect is not caused by misuse, neglect, accident, abnormal conditions of operation, or damage resulting from attempted repair or modifications by a non-authorized service facility.

The customer will be responsible for the transportation and insurance charges for the return of products to the service facility. Teledyne LeCroy will return all products under warranty with transportation charges prepaid.

This warranty replaces all other warranties, expressed or implied, including but not limited to any implied warranty of merchantability, fitness or adequacy for any particular purposes or use. Teledyne LeCroy shall not be liable for any special, incidental, or consequential damages, whether in contract or otherwise.

Certifications

Declaration of Conformity - EMC

European Community

The probe meets the intent of EC Directive 2004/108/EC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities:

EN 61326-1:2006 EMC requirements for electrical equipment for measurement, control, and laboratory use. 123

- 1 This product is intended for use in nonresidential areas only. Use in residential areas may cause electromagnetic interference.
- 2 Emissions which exceed the levels required by this standard may occur when the probe is connected to a test object.
- 3 To ensure compliance with the applicable EMC standards, use high quality shielded interface cables.

EUROPEAN CONTACT:*

Teledyne LeCroy Europe GmbH Im Breitspiel 11c D-69126 Heidelberg Germany

Tel: (49) 6221 82700

Australia & New Zealand

The probe complies with the EMC provision of the Radio Communications Act per the following standards, in accordance with requirements imposed by the Australian Communication and Media Authority (ACMA):

AS/NZS CISPR 11:2011 Radiated and Conducted Emissions, Group 1, Class A.

AUSTRALIA / NEW ZEALAND CONTACTS:*

RS Components Pty Ltd.

Suite 326 The Parade West

Kent Town, South Australia 5067

RS Components Ltd.

Unit 30 & 31 Warehouse World

761 Great South Road

Penrose, Auckland, New Zealand

^{*} Visit teledynelecroy.com/support/contact for the latest contact information.

Declaration of Conformity – Low Voltage Directive

The probe meets the intent of EC Directive 2006/95/EC for Product Safety. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities:

EN 61010-2-032:2002 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 2-032: Particular Requirements for Hand-Held and Hand Manipulated Current Sensors for Electrical Test and Measurement.

Environmental Compliance

End-Of-Life Handling

X

The probe is marked with this symbol to indicate that it complies with the applicable European Union requirements to Directives 2002/96/EC and 2006/66/EC on Waste Electrical and Electronic Equipment (WEEE) and Batteries.

The probe is subject to disposal and recycling regulations that vary by country and region. Many countries prohibit the disposal of waste electronic equipment in standard waste receptacles. For more information about proper disposal and recycling of your Teledyne LeCroy product, visit teledynelecroy.com/recycle.

Restriction of Hazardous Substances (RoHS)

The product and its accessories conform to the 2011/65/EU RoHS2 Directive, as they have been classified as Industrial Monitoring and Control Equipment (per Article 3, Paragraph 24) and are exempt from RoHS compliance until 22 July 2017 (per Article 4, Paragraph 3).